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Kinetics of ordering in fluctuation-driven first-order transitions: Simulation and theory
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Many systems involving competing interactions or interactions that compete with constraints are well de-
scribed by a model first introduced by Brazovskii†Zh. Eksp. Teor. Fiz.68, 175 ~1975! @Sov. Phys. JETP41,
85 ~1975!#‡. The hallmark of this model is that the fluctuation spectrum is isotropic and has a maximum at a
nonzero wave vector represented by the surface of ad-dimensional hypersphere. It was shown by Brazovskii
that the fluctuations change the free energy structure from af4 to a f6 form with the disordered state
metastable for all quench depths. The transition from the disordered phase to the periodic lamellar structure
changes from second order to first order and suggests that the dynamics is governed by nucleation. Using
numerical simulations we have confirmed that the equilibrium free energy function is indeed of af6 form. A
study of the dynamics, however, shows that, following a deep quench, the dynamics is described by unstable
growth rather than nucleation. A dynamical calculation, based on a generalization of the Brazovskii calcula-
tions, shows that the disordered state can remain unstable for a long time following the quench.

PACS number~s!: 05.10.Cc, 05.40.2a, 05.45.2a
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I. INTRODUCTION

Kinetics of growth can be broadly classified into two ca
egories: nucleation and spinodal decomposition~or continu-
ous ordering!. The former applies to situations where th
initial state is metastable and the latter where the initial s
is unstable. The distinction becomes unclear near the lim
metastability and in systems where the concept of meta
bility itself is ill defined. A class of systems where the de
nition of metastability becomes ambiguous is one wh
there is a fluctuation-driven first-order phase transition.
theoretical model describing these transitions was propo
by Brazovskii in 1974@1#. The Brazovskii model has bee
shown to apply to the nematic to smectic-C transition in
liquid crystals@2#, to the onset of Rayleigh-Be´nard convec-
tion @3,4#, and to microphase separation in symmet
diblock copolymers in the weak segregation limit@5,6#. In
the diblock copolymer system, experiments have shown
the Brazovskii scenario can describe the nature of the fi
order transition@7#.

It was shown by Brazovskii, within a self-consistent Ha
tree approximation, that the fluctuations destroy the me
field instability and lead to a first-order phase transition@1,8#.
Theories of nucleation and growth have been construc
based on the idea that the static, Brazovskii-renormali
theory can provide an effective potential for a stochas
Langevin equation@8,9#. In this paper we examine the valid
ity of this description by using numerical simulations
study the relaxational dynamics of a model described by
Brazovskii Hamiltonian. These results are compared to
predictions of ‘‘static’’ nucleation theories and to the pred
tions of a theory@10# based on the dynamical action forma
ism.

The rest of the paper is laid out as follows. The dynami
equation under consideration is introduced in the next s
tion along with an outline of the computational approach.
PRE 621063-651X/2000/62~5!/6116~10!/$15.00
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the third section a review of the static results of Brazovs
and the simulation results that confirms this picture is p
sented. A scaling presented by Hohenberg and Swift@9# is
also confirmed. A review of a dynamical perturbation theo
presented in Ref.@10# is given in Sec. IV. This work uses th
dynamical action formulation@11# to study the contributions
of perturbations around the classical path. The contributi
considered are of the same order as those considered by
zovskii in the static calculation. These results are compa
to simulations. A numerical analysis of the theory sugge
that, after the system is quenched to low temperatures,
disordered metastable well develops slowly. During this e
lution of the free energy the system has time to develo
lamellar structure. This picture is supported by our simu
tion results in which the effective curvature of the disorder
free energy is measured. That curvature is shown to be n
tive at early times after a quench and becomes positive o
at late times. Thus the evolution of the order paramete
better described by continuous ordering rather than nu
ation. This is the main result of this paper. The last sect
contains suggestions for testing these results experimen
as well as plans for future work.

II. EQUATION OF MOTION AND NUMERICAL
SIMULATIONS

Our starting point is the same as in Ref.@9# and describes
a system with modelA dynamics @12# and a Brazovskii
Hamiltonian ~cf. @13# for consideration of block copoly-
mers!. The Brazovskii Hamiltonian is characterized by
fluctuation spectrum whose maximum occurs at a nonz
wave vectoruqu5q0 and can be represented by a hype
sphere ind dimensions. The full form of the Hamiltonian i

H5E dxS 1

2
f~¹21q0

2!2f1
1

2
tf21

1

4!
lf4D . ~1!
6116 ©2000 The American Physical Society
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The dynamics is taken to be relaxational and so the equa
of motion is given by the Langevin equation,

df

dt
52M

dH

df
1h, ~2!

whereM is the mobility ~which sets the time scale for th
problem! and h is the usual Gaussian noise@^h&50 and

^h(xW ,t)h(xW8,t8)&5d(xW2xW8)d(t2t8)].
The stochastic Langevin equation derived from t

Hamiltonian differs from the usual Ginzburg-Landau d
scription@12# in the appearance of an unusual gradient te
This dynamical equation is usually referred to as the Sw
Hohenberg~S-H! equation and falls into the typeI s classifi-
cation of Cross and Hohenberg@14#. In this classification the
system is unstable to a static, spatially periodic structure

The complete equation of motion is

df

dt
52M S q0

2¹2f1¹4f1~q0
41t!f1

l

6
f3D1h. ~3!

In Eq. ~3!, the coupling constantl has been rescaled by th
noise strength. For systems where the noise strength is s
such as Rayleigh-Be´nard convection@4#, the effective cou-
pling constant is also small. In diblock copolymers, the no
strength is of the order ofkBT.

For numerical calculations, the Langevin equation m
be approximated by a discrete equation:

f~ t1Dt !5f~ t !2MDtS Lf1L2f1~r 1q0
4!f1

l

6
f3D

1@MDt/~Dx!3#1/2h. ~4!

L here is the discrete Laplacian. This can take on sev
forms, although for this work we use the simple
form, d2f/dx2'Lf5(@(1/Dx2)(x1Dx)1f(x2Dx)
22f(x)#, where the sum is over the dimensions of the l
tice. Other choices that include next nearest or more com
cated neighborhoods are possible@15#. This is important if
isotropy is of concern; however, the effect is small and c
be ignored. The scaling of the noise in Eq.~4! reflects the
fact that, as the cell size or time step becomes sma
~larger!, the possible fluctuations become larger~smaller!.

For these simulations we setq051 and choose the lattic
spacing such that one lamellar spacing spans six lattice
(Dx56/2p) For most of this work the overall lattice size
603. The mobilityM is set to 1. In order for the simulation
to be numerically stable the time scale must be smaller t
some stability time,Dt;1/Dx4. To satisfy this the time scale
is chosen to beDt50.01 and measurements are taken
intervals of 100Dt or longer.

Previous theories of nucleation have analyzed the ab
equation under the approximation that the effects of fluct
tions can be incorporated into astatic renormalized free en
ergy FR which replaces the bare free energyF in Eq. ~2!
@8,9#. We will compare our numerical results to the Br
zovskii predictions for the static renormalized paramet
and show that the static scenario is beautifully borne out
simulations in three dimensions. We will then analyze
time dependence of the structure factor as observed in
numerical simulations and show that this time dependenc
on
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inconsistent with the dynamical picture based on a st
renormalized free energy. A theory based on thedynamical
perturbative treatment of Eq.~3! can provide a qualitatively
correct description of the numerical simulations.

III. STATICS

A. Brazovskii theory

Brazovskii’s treatment of the model within the Hartre
approximation can be restated in terms of an expansion
the thermodynamic potentialG(f̄), the generating functiona
for the vertex functions@11#. This approach has been de
scribed in detail by Fredrickson and Binder@8#, and within
the Hartree approximation leads to a renormalized mass t
~r! in Eq. ~1!. The diagrams up to one loop are shown in F
1, and the mass renormalization relation is given by

r 1~q22q0
2!25t1~q22q0

2!2

1
l

2E dq

~2p!d
@t1~q22q0

2!2#21. ~5!

This approximation is made self-consistent by replac
the bare parameter in the integrand with the renormali
parameter. Essentially the bare propagator on the loop in
1 is replaced by a renormalized propagator. This leads to
Hartree result,

r 5t1
l

2E dq

~2p!d
@r 1~q22q0

2!2#215t1al/Ar . ~6!

a includes the geometric factors that depend on the dim
sion of the system and in three dimensionsa51/4p2. Ac-
cording to Brazovskii@1# the Hartree approximation is goo
only for l26!1.

The interesting point about Eq.~6! is that, for all positive
and negative values of the bare parametert, the renormal-
ized parameterr is always positive. This implies that th
disordered phase is always metastable. Brazovskii went o
show that the bare coupling parameterl gets renormalized to
a negativevalue leading to af6 theory and the possibility of
a first-order phase transition@8#.

B. Computational results

Numerical simulations can measure the static struct
factor in the disordered phase which is predicted by the B
zovskii theory@1,8# to be

S~q!215r 1~q22q0
2!2, ~7!

FIG. 1. Diagrams used for static renormalization of the m
parameter in the free energy. The Hartree approximation uses
grams only up to orderl and then replaces the bare parameter
the integrand with the renormalized one to solve the equations
consistently.
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FIG. 2. The renormalized control parameterr
~dimensionless! plotted against the bare contro
parametert ~dimensionless!. The different data
sets are for different values ofl. The Gaussian
casel50, which was used to set the scale, is al
plotted for comparison. The inset shows the r
gion near the mean-field transition. Note that t
renormalized parameter does not cross zero h
b
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where r is the renormalized control parameter@1,9#. Thus,
S(q0)21 is just r. The renormalized mass can, therefore,
measured by monitoring the peak of the structure factor.
Hartree calculations predictr to be positive and asymptoti
cally approaching zero ast→2`. Experiments in symmet
ric diblock copolymers@22# have verified that the behavio
of S(q0) is consistent with the Brazovskii predictions and
very different from the mean-field prediction@S(q0)5t21#
@7#.

Figure 2 shows results forr obtained from our simulations
for different values of the coupling constantl. The Gaussian
case (l50) is also shown for comparison. The system w
run for 1000 time steps~each time step being 100Dt) and
100 samples were taken. The data points plotted are the
erage of the samples while the error bars represent the sq
root of the standard deviation. For large positive values
the bare control parametert, the fourth-order term become
less important andr approaches the Gaussian value. This
seen clearly for small values ofl. As t approaches zero, th
measured values ofr deviate from the Gaussian case and s
positive for all t. Some care was taken to normalize t
values presented in Fig. 2. For the Gaussian case,S(q0)21

should be linearly related tot and the slope of the line
should be 1. In calculatingS(q0) several normalizations ar
needed, including the normalization due to the Fourier tra
form ~FT! and the normalization due to circular averagin
While the FT normalization is just related to the system si
the normalization due to circular averaging is more com
cated to calculate. Instead of calculating these normalizat
directly, the slope of the raw result from the Gaussian c
was used to normalize all of the data. Another concern is
for an infinite continuous system this line should have ax
intercept at zero; however, for the finite systems on a g
used in the simulations thex intercept is slightly negative. To
account for this, all of the data are shifted by an amo
equal to that intercept. This is important because whe
scaling is applied the values of the results around zero
magnified. A small negative~positive! value becomes a
much larger negative~positive! value and so shifts from
negative to positive will become important.

In Ref. @9# the authors show that, within the Hartree a
proximation, ther (t) curves for differentl ’s can be de-
scribed by a single functional form in terms of scaled va
ablest* and r * :
e
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r * 5r * ~al!22/3,
~8!

t* 5t* ~al!22/3.

As stated above, in three dimensionsa51/4p2. Figure 3
shows plots ofr * versest* obtained from simulations for
three different values ofl. The curves are seen to scale qu
well but the scaled curve falls significantly below the the
retical prediction@1,8,9# shown as the thick black line. Th
theoretical prediction that the value ofr * ~and r ) never be-
comes negative and is asymptotic to zero is, however, cle
borne out by the simulations. The deviation from the the
retical line could be a system size effect; however, results
larger and smaller systems are consistent with the d
shown in Fig. 3. For the Gaussian caser * 5t* and for large
positive values of the bare parameter both the theory
simulations approach this. Since the theoretical results
larger than the simulations and both are above the Gaus
our simulations suggest that the contributions to the tw
point function from diagrams not included in the Hartr
approximation serve to lower the overall correction to me
field theory. Another property that the simulation data e
hibit in Fig. 3 which is not predicted by the theory is that th
curves for different values ofl diverge from each other a
negative values oft, i.e., the scaling is not perfect. Smalle
values ofl lie closer to the theory, as expected. It is al
important to note that the smallest value ofl used wasl
50.06 while the approximation used to derive the theoreti
results is valid only forl;1026; so the theoretical scaling
predictions seem to be far more robust than expected.

To further explore the nature of the phase transition in t
model, we can compare scaled values ofS(q0) obtained
from hot ~random! and cold~purely modulated order! initial
configurations. Figure 4 shows just such a plot. As in
previous plot, the theory is shown as a thick black line. F
each value ofl there are two lines presented: one for
disordered start and one for an ordered start. The avera
was done as described above. For positive and small n
tive values oft the results from the disordered start and t
ordered start are nearly the same. However, fort* below
some ts* the two differ, with the ordered phase having
higher peak. It should be pointed out that for these value
t* the disordered state is not in equilibrium~metastable or
stable! and there is a slow but definite time evolution of th
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FIG. 3. Scaling ofr (t) using the form de-
duced from Hartree theory@Eq. ~8!#. The data
collapse well except at the deepest quenches.
scaling curve predicted by the Hartree appro
mation is shown for comparison. It is in fairly
good agreement with the data considering that
values ofl used in the simulations are four or
ders of magnitude larger than that for which th
approximation is expected to be valid. Bothr *
andt* are dimensionless.
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structure factor over the time period in which the avera
are taken. This time evolution will be discussed in mo
detail in Sec. IV. For this work the disordered start points
included in the plot simply as a comparison to see where
ordered phase melts. The value where the two data set
verge can be considered an estimate for the limit of stab
~spinodal! of the lamellar phase. As a consistency check
average value of the wave vector was measured. For va
of t abovets the wave vector is small and points in a ra
dom direction, while for lower values oft the average wave
vector is large and points along the direction that the sys
was prepared in. For all three sets of data the lamellar s
odal lies in the range of22.1,ts* ,21.9. This is consisten
with the prediction from Hartree theory that the first-ord
transition to the lamellar phase occurs at a lower value oft* ,
t t* 522.74 @9#. That is to say, our measured value for t
lamellar spinodal is above the predicted transition tempe
ture as it should be. For values oft* below ts* , however,
systems prepared in the disordered phase always evolv
ward the ordered phase. It is possible that the lamellar
dered phase is enhanced by the boundary conditions~the
lattice size is always chosen to be commensurate with
s

e
e
di-
y
e
es

m
n-

r

a-

to-
r-

e

lamellar wavelength!; however, it should be noted tha
lamellae form in many possible directions where the syst
size is not commensurate with the lamellar wavelength. D
cussion in Sec. IV should shed some light on this issue.

IV. DYNAMICS

A. Relaxational dynamics based on static renormalized
parameters

Previous analyses of nucleation and metastability, in
context of fluctuation-driven phase transitions, have be
based on a Langevin equation with the force obtained fr
the static, Hartree-renormalized free energy function@8,9#.
Fredrickson and Binder@8# used this approach to compu
the nucleation barrier and the completion rate of nucleat
and growth in diblock copolymers. The interfacial tensi
was found to be small, leading to a small nucleation bar
and rapid nucleation for deep quenches. The shape of
nucleating droplet was more carefully analyzed by Hoh
berg and Swift@9# by taking into account spatial inhomoge
neities in the effective free energy function. Their analy
relied on constructing a coarse-grained free energy fu
simulating a
peratures

higher peak
FIG. 4. Temperature dependence of the average intensity at the peak of the structure factor~in arbitrary units!. To show the transition,
results from two different starting configurations are compared. The shapes of the symbols denote different values ofl, whereas the shading
distinguishes between the starting configurations. The closed symbols represent systems that were started in a disordered state,
hot start, while the open symbols are for systems that were started with an ordered lamellar structure already present. At high tem
the two starting conditions give nearly the same results, while at low temperatures the systems prepared in the ordered state have
intensities, implying that the systems prepared in the disordered states are in a metastable state or not in equilibrium~see text!.
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tional. The coarse graining was based on a momentum-s
renormalization idea where fluctuations with momenta
away from the shell defined byuqu5q0 are successively in
tegrated out. This analysis led to nonspherical droplets
was consistent with the picture of spinodal nucleation t
had been obtained earlier@16#. In this picture, there is no
essential difference between the kinetics of a fluctuati
driven first-order transition and a weak first-order transitio
The results of our simulations suggest a very different s
nario for the growth of the lamellar structures in a Brazovs
model.

As pointed out in the work of Hohenberg and Swift@9#, a
complete theory of the dynamics of fluctuation-driven fir
order transitions would have to be based on a coarse grai
of the full dynamics as expressed by the original Lange
equation with the bare Brazovskii Hamiltonian. In this pap
we compare the results of our numerical simulations to
predictions of a Hartree renormalization of the full dynam
cal equation as expressed in Eq.~2!. Our emphasis has bee
on understanding the nature of the dynamics of the m
stable phase and we have not analyzed, in any detail,
spatial structures associated with the growth process.

B. Perturbative analysis of the dynamics and simulation results

In order to systematically analyze the effects of fluctu
tions on the kinetics of growth of the lamellar phase, pert
bative techniques analogous to the static Hartree approx
tion have to be applied to the Langevin equation. This
most conveniently done through the dynamical action f
malism@11#. The application of this method to the S-H equ
tion was outlined by Ignatievet al. @10#. In the dynamical
action formalism, the average value of an operatorO(f)
over the noise history is rewritten as a functional integra

^O$f~x,t !%&5E Df exp~2S@f#!, ~9!

whereS@f# is the dynamical action@11#.
As in the static case, the calculation of dynamical cor

lation functions is most conveniently formulated through t
construction of a generating function@11#. To establish the
closest analogy with the static calculations, it is useful
work with the generator of vertex functionsGdyn@f̄#, and
establish a diagrammatic expansion that is the exact an
of the diagrams retained by Brazovskii in the static calcu
tion. The simulation results demonstrate that the static pr
erties of the S-H equation closely follow the Brazovskii pr
dictions and, therefore, it seems appropriate to apply
approximation scheme to the dynamics. The corresponde
between statics and dynamics becomes particularly trans
ent in a superfield formulation@17#, which shows that the
dynamical perturbation theory in terms of the superfields
exactly the same structure as the static perturbation th
except for the appearance of a different ‘‘kinetic’’ term
which leads to abarepropagator that is distinct from that o
the static theory. The superfield correlation functions can
calculated by constructing diagrams as in the static the
but replacing the static bare propagator by the appropr
dynamical one@17#. The superfield correlation functions en
code all the dynamical correlations of the fieldf and the
ell
r
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latter can be extracted from well-defined relations@17#. The
details of this calculation and the results will be described
a separate publication@10#. In this paper we present the ma
results, which can be compared to the numerical simulatio

The two correlation functions that appear in the dynam
cal study are

G~ t,t8!5^f~ t !h~ t8!&

and

C~ t,t8!5^f~ t !f~ t8!&.

Both of these can be obtained from a single superfield c
relation function@Q(1,2)# which is related toGdyn through

Q21~1,2!5
d2Gdyn

dF1dF2
, ~10!

where theF ’s are the superfields and the derivative is eva
ated with the source term set to zero. Treating Eq.~2! ac-
cording to the formalism described above leads to an exp
sion forGdyn that involves two-point correlation functions o
the fluctuations and is a natural extension of the staticG(f̄)
to correlation functions involving time. The expression, ho
ever, does not lend itself to easy analysis except in two ca
early times when a variant of linear theory can be appl
and late times when the system is stationary. The late t
dynamics involves analysis of the nonlinear terms and w
be discussed in the concluding section. The early time
namics is where one is justified in retaining only quadra
terms in the renormalizedGdyn . In this limit we obtain the
following equation for the equal-time correlation functio
Cq(t,t)5^fq(t)f2q(t)&, which is the structure factor that i
monitored in the simulations:

Cq~ t,t !5E
0

t

@G~ t,t8!#2dt8,

~11!

Gq~ t,t8!5expS 2E
t8

t

@r ~ t9!1~q22q0
2!2#dt9D .

The mass parameterr (t), which is now time dependent, i
renormalized in the dynamic theory using the same appr
mation as in the static theory. The diagrams used are sh
in Fig. 5. These again are only to one loop. The mass te
then becomes

r ~ t !1~q22q0
2!25t1~q22q0

2!2

1
l

2 S E dq

~2p!d

1

@t1~q22q0
2!2#

2E dq

~2p!d

exp$22@t1~q22q0
2!2#t%

@t1~q22q0
2!2#

D .

~12!

Again, the approximation is made self-consistent by repl
ing thet with r in the integrand,
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r ~ t !5r eq2
l

2E d3q

~2p!3

exp@22D~q!t#

D~q!
. ~13!

Here D(q) is the renormalized propagatorD(q)5r eq1(q2

2q0
2)2 where r eq denotes thestatic renormalized mass pa

rameter that is the solution to Eq.~7!.
In Eq. ~13!, at long times the integrand in the second te

becomes small andr (t) approachesr eq , which is confirmed
in Sec. III above. At time zero the subtraction of the seco
term is just a subtraction of the Hartree level correction f
tor from the bare parameter introduced earlier@Eq. ~6!# and,
therefore,r (t50) is just the bare parametert, while as t
→` r (t) approaches the renormalized, equilibrium value

This scenario is confirmed by the simulations. The sim
lation results discussed in Sec. III B confirm that the equil
rium valuer eq is consistent with the Hartree prediction. An
lyzing the early stage dynamics can verify the value ofr (t)
at short times. Figure 6 shows the growth ofS(q0) as a
function of time for various values of the bare control p
rametert. To average over noise, five independent runs w
taken for each value of the control parameter. Ifr (t) is time
independent, the early stage evolution~linear theory! is de-
scribed by@18#

S~q,t !5Cq~ t,t !5S~q,0!exp$2D~q!t%1
1

D~q!

3@12exp$2D~q!t%#, ~14!

where D(q) is D(q)5r 01(q22q0
2)2 and r 0 is the time-

independent value ofr. At the peak of the structure facto
q5q0, andD(q0) is just r 0, the value of which can be est
mated by fitting the simulation results shown in Fig. 6 to t
form given in Eq.~14!. The results of such fits are present
in Fig. 7. This figure shows thatr 0 andt are linearly related
with a slope that is nearly 1. This implies that for short tim
the dynamically renormalized parameter is linearly related
the bare parameter and is not renormalized to positive va

FIG. 5. As with the static case, diagrams only up to orderl are
used and then the bare parameter is replaced by the renorma
parameter to give a self-consistent solution.
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for negative values of the bare parameter. The early st
dynamics, therefore, is characteristic of a system exhibit
unstable growth.

These fits must be considered with some care. In the c
wherer is not time dependent, the linear theory describes
system only for short times, that is, times on the order of
natural time scaler 21 ~see, for example,@19#!. For the fast-
est growing mode, when the data are fitted to different ti
scales, the results obtained are consistent for all time sc
up to r 21. For the S-H equation, however, the results o
tained are dependent on the time range. In particular, as
range of time increases the values obtained forr become less
negative. This is consistent withr (t) growing as a function
of time and the results of the fits merely represent so
average value ofr (t) for the time range involved.

As already stated, if the system has been quenched
negative value oft, Eq. ~13! indicates that the early time
evolution will exhibit unstable growth. As time evolves th
second term in Eq.~13! decreases and the value ofr (t) ap-
proachesr eq , which is always positive. Although the inte
gral in Eq.~13! is hard to evaluate analytically, numerics ca
provide some insight into its behavior. Figure 8 shows
numerical evaluation of the time evolution ofr (t) for vari-
ous values ofr eq and l50.06. As confirmed in Sec. III
above,r (t) will eventually become positive no matter ho
deep the quench is, although the time for this to happen m
become very long. Whiler (t) is negative the system is ex
pected to undergo unstable growth; although, since the m
parameter is time dependent, the time evolution will be m
complicated than the usual phase ordering scenario.

To know whether the system has time to develop a mo
lated structure beforer (t) changes sign, we need to defin
two times, the crossover timetcross at which r (t) changes
sign, and an average growth timetave . The average growth
time is just the inverse ofr ave defined as

tave
21 5r ave5

1

tcross
E

0

tcross
r ~ t8!dt8. ~15!

In Fig. 9, we show plots oftcross andtave as functions of the
bare control parameter. For shallow quenchestcross is small
compared totave and the system reaches a well-defin
metastable equilibrium state, which is disordered. Iftcross
becomes larger thantave , metastability becomes difficult to
define. The system takes longer to equilibrate in the me

ed
e

h
to
i-
FIG. 6. The time evolution of the structur
factor peak~in arbitrary units! for the earliest
times. Different sets are for different quenc
depths as indicated on the graph. All quenches
below the mean-field transition temperature in
tially show unstable growth.
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FIG. 7. Growth time~in arbitrary units! as
calculated from fits to a linear theory plotte
against the quench depth below the mean-fi
transition. For short times the system should
described by linear theory, which predicts u
stable growth for all quenches below the mea
field transition.
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stable disordered phase than it takes to grow lamellar st
tures. We can use the conditiontcross5tave to define a cross-
over temperature tdyn* . Above this temperature th
disordered phase quickly becomes locally stable and a nu
ation event is needed for the formation of lamellar structur
Below tdyn* , the system is expected to evolve continuou
toward the lamellar phase without any evidence of meta
bility of the disordered phase.

Figure 9 is in sharp contrast to standard Ginzburg-Lan
~G-L! theory. For the time-dependent G-L equation, the pr
ence of noise suppresses the critical point. In the reg
where the bare parameter is negative but the renormal
parameter is positive,tcross is always smaller thantave and
so there is no unstable growth until the true critical point
reached. For the system under consideration here, diffe
scenarios are possible depending on the relationship of
dynamical crossover temperature to the first-order transi
temperaturet t* at which the free energy of the lamella
phase becomes lower than that of the disordered phase.t t*
is higher thantdyn* , there will be a regime of temperature
over which the system will undergo nucleation and grow
On the other hand, ift t* is lower thantdyn* , then there is no
nucleating regime and one will observe only unsta
growth, albeit of an unusual nature since the free ene
surface is evolving with time. Since the value oft t* 5
22.74 given by Hohenberg and Swift@9# is considerably
below tdyn* the latter scenario is the one that best fits t
c-
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system. The results of our simulations, presented in the n
section, are in qualitative agreement with this scenario.
would like to emphasize that the growth dynamics describ
above is qualitatively different from rapid nucleation
which the system quickly reaches the stable equilibri
state. The value oftcross, on the other hand, indicates a typ
of ergodicity breaking as the system takes a very long time
reach equilibrium.

All of our numerical results indicate thatt t* predicted
from Hartree theory is lower thantdyn* and they are remark
ably close to each other. We have been unable to come
with a simple relationship between these two temperatu
and, therefore, can only interpret the similarity of the two
a remarkable coincidence. The dynamical crossover is
duced from time scales that characterize the evolution of
free energy surface while the transition temperature is
duced from a comparison of the depths of the two wells. I
not clear why the two temperatures should be similar in m
nitude. It can be argued that there is only a single param
l controlling the scale of fluctuations and, therefore, the t
temperatures should be related; however, there is no obv
argument to suggest that they should be identical.

The picture emerging from the dynamical renormalizati
is a natural extension of the effect of fluctuations on t
static results of the Brazovskii model. Following a quen
from a relatively high temperature to a temperature whert
is negative, the system is in a locally unstable region~top of
-
a-

ld
es
s

FIG. 8. The time evolution of the mass pa
rameter as calculated by dynamic renormaliz
tion. r (t) ~dimensionless! eventually becomes
positive for all quenches below the mean-fie
transition but the time for that crossover increas
dramatically for larger quenches. At large time
r (t) approachesr eq .
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FIG. 9. The calculated crossover time~in ar-
bitrary units! plotted against quench depth. Als
plotted is a characteristic growth time for th
lamellar structure. These results have been sca
using Eq. ~8! so that they arel independent.
When this time becomes much less than t
crossover time then the lamellar structure h
enough time to grow. Notice that this occurs ju
above or at the transition temperaturet t .
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a hill!. As the fluctuations grow with time, the nonline
terms characterized byl become important and they reno
malize the curvature of the hill. This scenario is quite diffe
ent from the usual picture of evolution in an adiabatic pot
tial.

C. Simulation results for late times

Further evidence for the dynamical scenario presente
the previous section comes from examining the long ti
evolution of the peak of the structure factor obtained fro
our numerical simulations and correlating that to snapsh
of the system as it evolves. Figure 10 is a plot of the am
tude of the structure factor peak as it evolves. For shal
quenches,t>20.03 (t* >22.26), the peak grows to a
equilibrium value and does not evolve further. The equil
rium values are consistent with the equilibrium values
ported above in Sec. III. For deeper quenches the peak
plitude grows quickly and then appears to saturate; howe
careful examination shows that the value continues to g
very slowly. This is consistent with late stage domain grow
which was studied extensively by Elderet al. for two-
dimensional~2D! systems@24#. The last feature in the sys
tem is a final rise to an equilibrium value. This rise is a fin
size affect caused by the majority domain finally taking ov
the entire system. This being the case, the peak would no
expected to grow much since the difference between
value before and after this final evolution should only rep
sent the surface area between the different domains.
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For a quench depth oft520.07 (t* 525.27) this time
evolution can be compared to a series of system snaps
shown in Figs. 11–15. These figures representf50 isosur-
faces which would be the boundaries between the differ
microphases of the system. For early times the system
pears to be very disordered while at later times domains
ordered lamellar structures begin to appear. Just before
final convulsive growth, at a timet54000, there still appea
to be a few different ordered domains while just after t
final growth, att55000, only one domain appears to be le
in the system. Thus we still have a consistent picture of s
but continuous domain growth in the system which is go
erned by the evolution of the second-order term as it g
from negative values to positive values.

V. DISCUSSION AND FUTURE WORK

In the work presented above we have shown that anal
of the static free energy does not always provide an adeq
description of the fluctuation-driven dynamics. Althoug
Fig. 10 shows features that are reminiscent of a first-or
phase transition, dynamical analysis of the renormalized
efficients suggests that a more complicated evolution is
ing place. A similar situation occurs for the superconduct
transition, which is also a fluctuation-driven first-order tra
sition @20#.

In the present work we have paid close attention to
time evolution of the mass parameter and its effect on
evolution of the system at early times. The dynamical p
r

e

ion

n
rly
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s

of
FIG. 10. The evolution of the structure facto
peak~in arbitrary units! as a function of time for
different quench depths. For all of these runsl
50.06. From the static work we know that th
actual transition occurs for20.04,t,20.03.
For shallow quenches above the actual transit
temperatureS(q0) grows quickly to its equilib-
rium value. For quenches to below the transitio
temperature the system grows quickly at ea
times and then reaches a late stage regime wh
it evolves by domain growth andS(q0) grows as
a small power law in time. The highlighted line i
a quench tot520.07. Snapshots of this system
as it evolves are presented in the next set
figures.
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FIG. 11. Time51000.

FIG. 12. Time52000.

FIG. 13. Time53000.
turbation theory also becomes tractable at times large c
pared totcross when the system has reached equilibrium.
pointed out earlier, one enters this regime fairly quickly f
shallow quenches. At this stage, the higher order terms
Gdyn become important. The most interesting aspect of
renormalized theory is that the fourth-order term becom
nonlocal in time@10#,

Gdyn~4!.E d1d2F2~1!K~122!F2~2!, ~16!

and the integral of the kernel over all times leads to
Brazovskii result for the renormalized fourth-order term. O
can derive an ‘‘effective’’ Langevin equation for the fieldsf
from the renormalizedGdyn , and Eq.~16! implies that this
Langevin equation has ‘‘memory’’ effects that appear in t
nonlinear term. This would lead to unusual behavior of t
equilibrium correlation functions and might provide a di
tinctive signature of fluctuation-driven first-order transition
We are in the process of investigating the effective equa
for f numerically. One obvious consequence of the nonlo
term is that the barrier to nucleation is dynamic and it is n
valid to think of nucleation as tunneling through a fixed ba
rier. The situation is closer to the problem of quantum tu

FIG. 14. Time54000.

FIG. 15. Time55000.
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neling for many degrees of freedom where one also finds
effective equation that is nonlocal in time@21#.

Another area of interest is the role of defects in the ph
transition of the system. These will be important for ve
shallow quenches to just below the transition point and
have noted their presence when looking at snapshots o
system. These defects are reminiscent of the perfor
lamellar phase described in Ref.@22#. One way to study this
is to use a directional order parameter measure introduce
Christensen and Bray@23# to study the 2D problem. This
order parameter is similar to the order parameter for comp
fluids and provides directional as well as density inform
tion. What it may show is that the local gradient terms a
enhanced for negative values oft, suggesting that perhap
there is a disordered to nematic transition in this regi
which others have suggested for 2D@24#.

The evidence we have presented here suggests tha
time evolution of systems undergoing a fluctuation-drive
first-order transition is different from standard nucleatio
We would like to close with a discussion of possible expe
mental systems where this dynamic scenario can be stu
experimentally. Since the effectivel is extremely small in
Rayleigh-Bénard systems the regime where the disorde
e

a

ie
on
he
cl
n

e

e
he
ed

by

x
-
e

,

the
-
.
-
ed

d

state is metastable will probably be inaccessible@25#.
Diblock copolymers are another experimental system
which the results described here may be observed. One
cial difference between this work and the polymer expe
mental system is that in a polymer melt the order param
is conserved. Inclusion of the conservation law in the wo
described here would shift the magnitude of the wave vec
peak in the growth factor of the linear theory by an amou
proportional to the quench deptht/k0

4; however, this shift is
small and it does not change the fact that growth occurs
an isotropic shell ofq vectors, which is crucial to the result
reported here. As mentioned in the Introduction, the dyna
equations considered here apply only to polymers in
weak segregation regime; that is where the conservation
@13# and hydrodynamics are not important. Even so,
diblock copolymers there should be a significant tempera
range, below the mean-field transition, where the disorde
state is locally stable, and a study of the equilibrium, tw
time correlation function should reveal the existence of
nonlinear memory term. It might also be possible to obse
unusual nucleation if the system parameters allow fort t* to
be higher thantdyn* .
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