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Kinetics of ordering in fluctuation-driven first-order transitions: Simulation and theory
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Many systems involving competing interactions or interactions that compete with constraints are well de-
scribed by a model first introduced by Brazovdidh. Eksp. Teor. Fiz68, 175(1975 [Sov. Phys. JETR1,
85 (1975]]. The hallmark of this model is that the fluctuation spectrum is isotropic and has a maximum at a
nonzero wave vector represented by the surfacedtiemensional hypersphere. It was shown by Brazovskii
that the fluctuations change the free energy structure fromf do a ¢° form with the disordered state
metastable for all quench depths. The transition from the disordered phase to the periodic lamellar structure
changes from second order to first order and suggests that the dynamics is governed by nucleation. Using
numerical simulations we have confirmed that the equilibrium free energy function is indeegdbeam. A
study of the dynamics, however, shows that, following a deep quench, the dynamics is described by unstable
growth rather than nucleation. A dynamical calculation, based on a generalization of the Brazovskii calcula-
tions, shows that the disordered state can remain unstable for a long time following the quench.

PACS numbd(s): 05.10.Cc, 05.406-a, 05.45--a

[. INTRODUCTION the third section a review of the static results of Brazovskii
and the simulation results that confirms this picture is pre-
Kinetics of growth can be broadly classified into two cat- sented. A scaling presented by Hohenberg and 9@ifis
egories: nucleation and spinodal decompositioncontinu- ~ also confirmed. A review of a dynamical perturbation theory
ous ordering The former applies to situations where the presented in Ref10] is given in Sec. IV. This work uses the
initial state is metastable and the latter where the initial statdlynamical action formulatiofl1] to study the contributions
is unstable. The distinction becomes unclear near the limit off perturbations around the classical path. The contributions
metastability and in systems where the concept of metast&onsidered are of the same order as those considered by Bra-
bility itself is ill defined. A class of systems where the defi- zovsKii in the static calculation. These results are compared
nition of metastability becomes ambiguous is one wherd© simulations. A numerical analysis of the theory suggests
there is a fluctuation-driven first-order phase transition. Athat, after the system is quenched to low temperatures, the
theoretical model describing these transitions was proposedisordered metastable well develops slowly. During this evo-
by Brazovskii in 1974[1]. The Brazovskii model has been lution of the free energy the system has time to develop a
shown to apply to the nematic to smecBiciransition in lamellar structure. This picture is supported by our simula-
liquid crystals[2], to the onset of Rayleigh-Bard convec- tion results in which the effective curvature of the disordered
tion [3,4], and to microphase separation in symmetricffee energy is measured. That curvature is shown to k_Je nega-
diblock copolymers in the weak segregation liffit6]. In  tive at egrly times after a quen_ch and becomes positive on.Iy
the diblock copolymer system, experiments have shown that late times. Thus the evolution of the order parameter is
the Brazovskii scenario can describe the nature of the firstoetter described by continuous ordering rather than nucle-
order transitior{ 7]. ation._This is the_main result_of this paper. The Iast_section
tree approximation, that the fluctuations destroy the mear@s Well as plans for future work.
field instability and lead to a first-order phase transifibs8].
Theories of nucleation and growth have been constructed  |I. EQUATION OF MOTION AND NUMERICAL
based on the idea that the static, Brazovskii-renormalized SIMULATIONS
theory can provide an effective potential for a stochastic ) o ) )
Langevin equatiofi8,d]. In this paper we examine the valid- ~ OUr starting point is the same as in Rid] and describes
ity of this description by using numerical simulations to @ SyStem with modeA dynamics[12] and a Brazovskii
study the relaxational dynamics of a model described by thé&lamiltonian (cf. [13] for consideration of block copoly-
Brazovskii Hamiltonian. These results are compared to th&"€r9. The Brazovskii Hamiltonian is characterized by a
predictions of “static” nucleation theories and to the predic- luctuation spectrum whose maximum occurs at a nonzero
tions of a theory10] based on the dynamical action formal- Wave vector|g=go and can be represented by a hyper-
ism. sphere ind dimensions. The full form of the Hamiltonian is
The rest of the paper is laid out as follows. The dynamical
equation under consideration is introduced in the next sec-
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tion along with an outline of the computational approach. In f dx 2 ¢(Vo+do) "¢+ 2 et 41 At @)
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The dynamics is taken to be relaxational and so the equation N

of motion is given by the Langevin equation, g . B ___ ., _&_ ) e
d_¢: -M ﬁ_'_ 2) FIG. 1. Diagrams used for static renormalization of the mass
dt o) K parameter in the free energy. The Hartree approximation uses dia-

grams only up to ordek and then replaces the bare parameter in
whereM is the mobility (which sets the time scale for the the integrand with the renormalized one to solve the equations self-
problem) and 7 is the usual Gaussian noi$éz)=0 and consistently.
(7(X) (X" ,1'))=8(x—X") 8(t—t")].

The stochastic Langevin equation derived from theinconsistent with the dynamical picture based on a static
Hamiltonian differs from the usual Ginzburg-Landau de-renormalized free energy. A theory based on digaamical
scription[12] in the appearance of an unusual gradient termperturbative treatment of E¢3) can provide a qualitatively
This dynamical equation is usually referred to as the Swift-correct description of the numerical simulations.
Hohenberg S-H) equation and falls into the type classifi-
cation of Cross and Hohenb€etd]. In this classification the
system is unstable to a static, spatially periodic structure.

The complete equation of motion is A. Brazovskii theory

do s . A N, Brazpvsl_di’s treatment of the_ model within the Hartree

rTo —M| ggVep+Vop+(qp+ 7)p+ €¢ +7. (3) approximation can be restate_d in terms of an expansion of
the thermodynamic potenti@l( ¢), the generating functional

In Eq. (3), the coupling constant has been rescaled by the for the vertex functiong11]. This approach has been de-

noise strength. For systems where the noise strength is smagigribed in detail by Fredrickson and Bindé], and within

such as Rayleigh-Bwrd convectior{4], the effective cou- the Hartree approximation leads to a renormalized mass term

pling constant is also small. In diblock copolymers, the noise(r) in Eq. (1). The diagrams up to one loop are shown in Fig.

Ill. STATICS

strength is of the order dfgT. 1, and the mass renormalization relation is given by
For numerical calculations, the Langevin equation must 2 22 2 22
be approximated by a discrete equation: r+(9°—gp)“=7+(9°—qp)
A A dq 2 2\21-1
d(t+At)= (1) — MAL £¢+LZ¢+(r+qg)¢+g¢3 +t3 (2w)d[7+(q —gp)] . (B
+[MAt/(Ax)3]Y29. (4)

This approximation is made self-consistent by replacing
L here is the discrete Laplacian. This can take on severdhe bare parameter in the integrand with the renormalized
forms, although for this work we use the simplestparameter. Essentially the bare propagator on the loop in Fig.
form, d2p/dxe~ Lp=S[(LIAXD) (x+AX)+ $(x—Ax)  1is replaced by a renormalized propagator. This leads to the
—2¢(x)], where the sum is over the dimensions of the lat-Hartree result,
tice. Other choices that include next nearest or more compli-
cated neighborhoods are possiblb]. This is important if )\f

isotropy is of concern; however, the effect is small and can ~ r=7+ = [r+(q?—q2)?] t=r+ar/\r. (6)

be ignored. The scaling of the noise in Hd) reflects the 2) (2m)?

fact that, as the cell size or time step becomes smaller

(largen, the possible fluctuations become largemallep. « includes the geometric factors that depend on the dimen-
For these simulations we sgg=1 and choose the lattice sjon of the system and in three dimensians 1/472. Ac-

spacing such that one lamellar spacing spans six lattice site®rding to Brazovski[1] the Hartree approximation is good

(Ax=6/2m) For most of this work the overall lattice size is only for A 6<1.

60°. The mobilityM is set to 1. In order for the simulations  The interesting point about E¢P) is that, for all positive

to be numerically stable the time scale must be smaller thaand negative values of the bare parametethe renormal-

some stability timeAt~ 1/Ax*. To satisfy this the time scale ized parameter is always positive. This implies that the

is chosen to beAt=0.01 and measurements are taken atdisordered phase is always metastable. Brazovskii went on to

intervals of 10Q\t or longer. show that the bare coupling parametegets renormalized to
Previous theories of nucleation have analyzed the abovenegativevalue leading to a° theory and the possibility of

equation under the approximation that the effects of fluctuaa first-order phase transitidi].

tions can be incorporated intostatic renormalized free en-

ergy Fr which replaces the bare free energyin Eq. (2)

[8,9]. We will compare our numerical results to the Bra-

zovskii predictions for the static renormalized parameters Numerical simulations can measure the static structure

and show that the static scenario is beautifully borne out byactor in the disordered phase which is predicted by the Bra-

simulations in three dimensions. We will then analyze thezovskii theory[1,8] to be

time dependence of the structure factor as observed in the . s 25

numerical simulations and show that this time dependence is S(q) "=r+(q°—ap)*, (7)

B. Computational results
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FIG. 2. The renormalized control parameter

(dimensionless plotted against the bare control
parameterr (dimensionless The different data

8:.?5?‘35(";“0*:0) sets are for different values of. The Gaussian
S 67»;0:6 case\ =0, which was used to set the scale, is also
plotted for comparison. The inset shows the re-
gion near the mean-field transition. Note that the
renormalized parameter does not cross zero here.
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wherer is the renormalized control paramefdr,9]. Thus, r*=r*(an)" 23
S(qo)‘l is justr. The renormalized mass can, therefore, be )
measured by monitoring the peak of the structure factor. The ™ =7 (aN) 25
Hartree calculations predictto be positive and asymptoti-
cally approaching zero as— —o. Experiments in symmet- As stated above, in three dimensiams: 1/472. Figure 3

ric diblock copolymerg22] have verified that the behavior shows plots ofr* verses7* obtained from simulations for
of S(qy) is consistent with the Brazovskii predictions and is three different values of. The curves are seen to scale quite
very different from the mean-field predictidrs(qo) =7 1] well but the scaled curve falls significantly below the theo-
[7]. retical prediction[1,8,9 shown as the thick black line. The

Figure 2 shows results farobtained from our simulations theoretical prediction that the value of (andr) never be-
for different values of the coupling constantThe Gaussian comes negative and is asymptotic to zero is, however, clearly
case f=0) is also shown for comparison. The system wagPorne out by the simulations. The deviation from the theo-
run for 1000 time stepgeach time step being 1@) and retical line could be a system size effect; however, results for
100 samples were taken. The data points plotted are the alarger and smaller systems are consistent with the data
erage of the samples while the error bars represent the squa#own in Fig. 3. For the Gaussian case= 7 and for large
root of the standard deviation. For large positive values ofositive values of the bare parameter both the theory and
the bare control parameter the fourth-order term becomes simulations approach this. Since the theoretical results are
less important and approaches the Gaussian value. This islarger than the simulations and both are above the Gaussian,
seen clearly for small values af As r approaches zero, the our simulations suggest that the contributions to the two-
measured values ofdeviate from the Gaussian case and stayPoint function from diagrams not included in the Hartree
positive for all 7. Some care was taken to normalize the@pproximation serve to lower the overall correction to mean-
values presented in Fig. 2. For the Gaussian cag,) * field theory. Another property that the simulation data ex-
should be linearly related to and the slope of the line hibitin Fig. 3 which is not predicted by the theory is that the
should be 1. In calculating(q,) several normalizations are curves for different values of diverge from each other at
needed, including the normalization due to the Fourier transtegative values of, i.e., the scaling is not perfect. Smaller
form (FT) and the normalization due to circular averaging.values of\ lie closer to the theory, as expected. It is also
While the FT normalization is just related to the system sizeimportant to note that the smallest value Jofused was\
the normalization due to circular averaging is more compli-=0.06 while the approximation used to derive the theoretical
cated to calculate. Instead of calculating these normalization@sults is valid only foln~10"®; so the theoretical scaling
directly, the slope of the raw result from the Gaussian cas@redictions seem to be far more robust than expected.
was used to normalize all of the data. Another concern is that To further explore the nature of the phase transition in this
for an infinite continuous system this line should havexan model, we can compare scaled valuesSffj,) obtained
intercept at zero; however, for the finite systems on a gridrom hot(random and cold(purely modulated ordginitial
used in the simulations theintercept is slightly negative. To configurations. Figure 4 shows just such a plot. As in the
account for this, all of the data are shifted by an amounprevious plot, the theory is shown as a thick black line. For
equal to that intercept. This is important because when g&ach value of\ there are two lines presented: one for a
scaling is applied the values of the results around zero ardisordered start and one for an ordered start. The averaging
magnified. A small negativepositive value becomes a was done as described above. For positive and small nega-
much larger negativepositive value and so shifts from tive values ofr the results from the disordered start and the
negative to positive will become important. ordered start are nearly the same. However, forbelow

In Ref.[9] the authors show that, within the Hartree ap-some 7z the two differ, with the ordered phase having a
proximation, ther(7) curves for different\’s can be de- higher peak. It should be pointed out that for these values of
scribed by a single functional form in terms of scaled vari-7* the disordered state is not in equilibriugmetastable or
ablest™ andr*: stablg and there is a slow but definite time evolution of the
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— Hartree Approximation
20 GO—8A=0.06

S—Or=06 FIG. 3. Scaling ofr(7) using the form de-

duced from Hartree theorjEqg. (8)]. The data
collapse well except at the deepest quenches. The
scaling curve predicted by the Hartree approxi-
mation is shown for comparison. It is in fairly

- good agreement with the data considering that the
values of\ used in the simulations are four or-
ders of magnitude larger than that for which the
approximation is expected to be valid. Bath

and 7 are dimensionless.
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structure factor over the time period in which the averagesamellar wavelength however, it should be noted that
are taken. This time evolution will be discussed in morelamellae form in many possible directions where the system
detail in Sec. IV. For this work the disordered start points aresize is not commensurate with the lamellar wavelength. Dis-
included in the plot simply as a comparison to see where theussion in Sec. IV should shed some light on this issue.
ordered phase melts. The value where the two data sets di-

verge can be considered an estimate for the limit of stability IV. DYNAMICS

(spinodal of the lamellar phase. As a consistency check the

average value of the wave vector was measured. For values A. Relaxational dynamics based on static renormalized

of 7 aboverg the wave vector is small and points in a ran- parameters

dom direction, while for lower values of the average wave Previous analyses of nucleation and metastability, in the
vector is large and points along the direction that the systergontext of fluctuation-driven phase transitions, have been
was prepared in. For all three sets of data the lamellar spinyased on a Langevin equation with the force obtained from
odal lies in the range of 2.1< 75 <—1.9. This is consistent  the static, Hartree-renormalized free energy funciigre).

with the prediction from Hartree theory that the first-order Fredrickson and Bindef8] used this approach to compute
transition to the lamellar phase occurs at a lower valug'of  the nucleation barrier and the completion rate of nucleation
7y =—2.74[9]. That is to say, our measured value for theand growth in diblock copolymers. The interfacial tension
lamellar spinodal is above the predicted transition temperawas found to be small, leading to a small nucleation barrier
ture as it should be. For values of below 7% , however, and rapid nucleation for deep quenches. The shape of the
systems prepared in the disordered phase always evolve toucleating droplet was more carefully analyzed by Hohen-
ward the ordered phase. It is possible that the lamellar orberg and Swif{9] by taking into account spatial inhomoge-
dered phase is enhanced by the boundary conditithes neities in the effective free energy function. Their analysis
lattice size is always chosen to be commensurate with theelied on constructing a coarse-grained free energy func-
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FIG. 4. Temperature dependence of the average intensity at the peak of the structur@rfatutrary unit$. To show the transition,
results from two different starting configurations are compared. The shapes of the symbols denote different Xxalwesmfas the shading

distinguishes between the starting configurations. The closed symbols represent systems that were started in a disordered state, simulating
hot start, while the open symbols are for systems that were started with an ordered lamellar structure already present. At high temperatures
the two starting conditions give nearly the same results, while at low temperatures the systems prepared in the ordered state have higher peak

intensities, implying that the systems prepared in the disordered states are in a metastable state or not in e(gaétaxn
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tional. The coarse graining was based on a momentum-shdltter can be extracted from well-defined relatip©g]. The
renormalization idea where fluctuations with momenta fardetails of this calculation and the results will be described in
away from the shell defined by|=q, are successively in- a separate publicatidri0]. In this paper we present the main
tegrated out. This analysis led to nonspherical droplets antesults, which can be compared to the numerical simulations.
was consistent with the picture of spinodal nucleation that The two correlation functions that appear in the dynami-
had been obtained earli¢t6]. In this picture, there is no cal study are
essential difference between the kinetics of a fluctuation-
driven first-order transition and a weak first-order transition. G(t,t")=(a(t)n(t"))
The results of our simulations suggest a very different sce-
nario for the growth of the lamellar structures in a Brazovskiiand
model.

As pointed out in the work of Hohenberg and Svi#fi, a C(t,t")=(p(t)p(t")).
complete theory of the dynamics of fluctuation-driven first-
order transitions would have to be based on a coarse grainirgoth of these can be obtained from a single superfield cor-
of the full dynamics as expressed by the original Langevinrelation function[Q(1,2)] which is related td" 4, through
equation with the bare Brazovskii Hamiltonian. In this paper,
we compare the results of our numerical simulations to the 1 Layn
predictions of a Hartree renormalization of the full dynami- Q(1.9= 5D, 6P,
cal equation as expressed in EB). Our emphasis has been
on understanding the nature of the dynamics of the metayhere theb’s are the superfields and the derivative is evalu-
stable phase and we have not analyzed, in any detail, thgted with the source term set to zero. Treating &X).ac-
spatial structures associated with the growth process. cording to the formalism described above leads to an expres-

sion forI' 4y, that involves two-point correlation functions of

B. Perturbative analysis of the dynamics and simulation results  the fluctuations and is a natural extension of the S‘E‘(E)

In order to systematically analyze the effects of fluctua-to correlation functions involving time. The expression, how-
tions on the kinetics of growth of the lamellar phase, pertur€Ver, does not lend itself to easy analysis except in two cases,
bative techniques analogous to the static Hartree approxim&arly times when a variant of linear theory can be applied
tion have to be applied to the Langevin equation. This is2nd late times when the system is stationary. The late time
most conveniently done through the dynamical action for-dynamics involves analysis of the nonlinear terms and will
malism[11]. The application of this method to the S-H equa-Pe discussed in the concluding section. The early time dy-
tion was outlined by Ignatieet al. [10]. In the dynamical Nhamics is where one is justified in retaining only quadratic
action formalism, the average value of an opera®ip) terms in the renormalizetl 4. In this limit we obtain the

over the noise history is rewritten as a functional integral, following equation for the equal-time correlation function
Cq(t,1) =(q(t) p_q(t)), which is the structure factor that is

monitored in the simulations:

2
(10

(Ofg(x0)) = | Do exp-S ), ©

t
cq(t,t)zf [G(t,t")]%dt,

where§[ ¢] is the dynamical actiohl1]. 0

As in the static case, the calculation of dynamical corre- .
lation fun_ct|ons is most co_nvenlent_ly formulated th_rough the Gq(t,t’)zexp( _f [r(t")+(g2—q2)2]dt" .
construction of a generating functida1l]. To establish the t/
closest analogy with the static calculations, it is useful to
work with the generator of vertex functiori,,[#], and ~The mass paramete(t), which is now time dependent, is
establish a diagrammatic expansion that is the exact analdghormalized in the dynamic theory using the same approxi-
of the diagrams retained by Brazovskii in the static calculaimation as in the static theory. The diagrams used are shown
tion. The simulation results demonstrate that the static propih Fig. 5. These again are only to one loop. The mass term
erties of the S-H equation closely follow the Brazovskii pre-then becomes
dictions and, therefore, it seems appropriate to apply this
approximation scheme to the dynamics. The correspondenddt) +(a%—a5)?= 7+ (g?—q5)?
between statics and dynamics becomes particularly transpar-

(11)

ent in a superfield formulatiopl7], which shows that the + E f dq 1

dynamical perturbation theory in terms of the superfields has 2 (27r)¢ [T+(q2—q§)2]

exactly the same structure as the static perturbation theory

except for the appearance of a different “kinetic” term, dg exp{—2[7+(g?>—qd)?]t}
which leads to @are propagator that is distinct from that of —J P > 2.2

the static theory. The superfield correlation functions can be (2m) [7+(9"=ao)”]
calculated by constructing diagrams as in the static theory (12

but replacing the static bare propagator by the appropriate
dynamical ond17]. The superfield correlation functions en- Again, the approximation is made self-consistent by replac-
code all the dynamical correlations of the fiejdand the ing the = with r in the integrand,
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G for negative values of the bare parameter. The early stage
o dynamics, therefore, is characteristic of a system exhibiting
G Gy Gy .Gy
—_— = -t + o==lose_ 0. unstable growth.

These fits must be considered with some care. In the case
gv(Perer is not time dependent, the linear theory describes the
System only for short times, that is, times on the order of the
natural time scale * (see, for exampld,19]). For the fast-

3 est growing mode, when the data are fitted to different time
F(t)=rgq— Ef d°q exd —2D(q)t] (13) scales, the results obtained are consistent for all time scales
2] (2m)3 D(q) up tor 1. For the S-H equation, however, the results ob-
tained are dependent on the time range. In particular, as the
Here D(q) is the renormalized propagatdr(q) =req+ (> range of time increases the values obtained foecome less
—-qd)? wherer ., denotes thestatic renormalized mass pa- negative. This is consistent with(t) growing as a function

FIG. 5. As with the static case, diagrams only up to oxdere
used and then the bare parameter is replaced by the renormaliz
parameter to give a self-consistent solution.

rameter that is the solution to E). of time and the results of the fits merely represent some
In Eq.(13), at long times the integrand in the second termaverage value of(t) for the time range involved.
becomes small and(t) approaches,,, which is confirmed As already stated, if the system has been quenched to a

in Sec. Ill above. At time zero the subtraction of the seconchegative value ofr, Eq. (13) indicates that the early time
term is just a subtraction of the Hartree level correction fac-evolution will exhibit unstable growth. As time evolves the
tor from the bare parameter introduced eafleg. (6)] and, second term in Eq(13) decreases and the valuerdt) ap-
therefore,r (t=0) is just the bare parametet while ast proaches ¢, which is always positive. Although the inte-
—oo r(t) approaches the renormalized, equilibrium value. gral in Eq.(13) is hard to evaluate analytically, numerics can
This scenario is confirmed by the simulations. The simu-provide some insight into its behavior. Figure 8 shows a
lation results discussed in Sec. Il B confirm that the equilib-numerical evaluation of the time evolution oft) for vari-
rium valuer ¢4 is consistent with the Hartree prediction. Ana- ous values ofre, and A=0.06. As confirmed in Sec. llI
lyzing the early stage dynamics can verify the value (@) above,r(t) will eventually become positive no matter how
at short times. Figure 6 shows the growth $fq,) as a deep the quench is, although the time for this to happen may
function of time for various values of the bare control pa-become very long. While(t) is negative the system is ex-
rameterr. To average over noise, five independent runs wer@ected to undergo unstable growth; although, since the mass
taken for each value of the control parameter.(lf) istime  parameter is time dependent, the time evolution will be more
independentthe early stage evolutiofiinear theory is de-  complicated than the usual phase ordering scenario.
scribed by[ 18] To know whether the system has time to develop a modu-
1 lated structure before(t) changes sign, we need to define
_ _ two times, the crossover timig,,ss at whichr(t) changes
S(4,0)=Cq(t,1) = S(a,0exp{ = D(a)t} + D(q) sign, and an average growth timg,.. The average growth
time is just the inverse af,,. defined as
X[1—exp{—D(q)t}], (14

where D(q) is D(q)=ro+(g*~d5)* and rg is the time- L f Ot (15
independent value af. At the peak of the structure factor, e A tiross)o

g=4do, andD(qq) is justrg, the value of which can be esti-

mated by fitting the simulation results shown in Fig. 6 to theln Fig. 9, we show plots of,ssandt,,e as functions of the
form given in Eq.(14). The results of such fits are presentedbare control parameter. For shallow quenchegs;is small

in Fig. 7. This figure shows that, and = are linearly related compared tot,,. and the system reaches a well-defined
with a slope that is nearly 1. This implies that for short timesmetastable equilibrium state, which is disorderedt|fs

the dynamically renormalized parameter is linearly related tdecomes larger thaty,., metastability becomes difficult to
the bare parameter and is not renormalized to positive valuegefine. The system takes longer to equilibrate in the meta-

0.0005 . T
0.0004 -
FIG. 6. The time evolution of the structure
0.0003 |- . . R .
-~ factor peak(in arbitrary unit$ for the earliest
%‘ times. Different sets are for different quench
0.0002 - depths as indicated on the graph. All quenches to
below the mean-field transition temperature ini-
tially show unstable growth.
0.0001
0 1 | [
0 10 20 30 40
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0.00

FIG. 7. Growth time(in arbitrary unit$ as
calculated from fits to a linear theory plotted
i against the quench depth below the mean-field
transition. For short times the system should be
described by linear theory, which predicts un-
stable growth for all quenches below the mean-
field transition.
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stable disordered phase than it takes to grow lamellar strusystem. The results of our simulations, presented in the next
tures. We can use the condititf),ss= ta,e t0 define a cross-  section, are in qualitative agreement with this scenario. We
over temperature r{jyn. Above this temperature the would like to emphasize that the growth dynamics described
disordered phase quickly becomes locally stable and a nuclabove is qualitatively different from rapid nucleation in
ation event is needed for the formation of lamellar structureswhich the system quickly reaches the stable equilibrium
Below 73, ,, the system is expected to evolve continuouslystate. The value df,,ss, On the other hand, indicates a type
toward the lamellar phase without any evidence of metastasf ergodicity breaking as the system takes a very long time to
bility of the disordered phase. reach equilibrium.

Figure 9 is in sharp contrast to standard Ginzburg-Landau Al of our numerical results indicate that® predicted
(G-L) theory. For the time-dependent G-L equation, the pres
ence of noise suppresses the critical point. In the regio
where the bare parameter is negative but the renormalize
parameter is positive,ss IS always smaller than,,. and
so there is no unstable growth until the true critical point is
reached. For the system under consideration here, differeﬁL
scenarios are possible depending on the relationship of th
dynamical crossover temperature to the first-order transitio

from Hartree theory is lower tharf;, , and they are remark-

ly close to each other. We have been unable to come up
ith a simple relationship between these two temperatures
and, therefore, can only interpret the similarity of the two as
remarkable coincidence. The dynamical crossover is de-
ced from time scales that characterize the evolution of the
Fee energy surface while the transition temperature is de-
* . Yuced from a comparison of the depths of the two wells. It is
temperaturer; at which the free energy of the lamellar not clear why the two temperatures should be similar in mag-
phase becomes lower than that of the disordered phasg. If nir,de. It can be argued that there is only a single parameter
is higher thanrg,,, there will be a regime of temperatures ) controlling the scale of fluctuations and, therefore, the two
over which the system will undergo nucleation and growthtemperatures should be related; however, there is no obvious
On the other hand, if{ is lower thany, ,, then there is no  argument to suggest that they should be identical.
nucleating regime and one will observe only unstable The picture emerging from the dynamical renormalization
growth, albeit of an unusual nature since the free energys a natural extension of the effect of fluctuations on the
surface is evolving with time. Since the value of = static results of the Brazovskii model. Following a quench
—2.74 given by Hohenberg and Swif®] is considerably from a relatively high temperature to a temperature where
below 73, , the latter scenario is the one that best fits thisis negative, the system is in a locally unstable rediop of

0.02 T T T T T T T T

FIG. 8. The time evolution of the mass pa-
rameter as calculated by dynamic renormaliza-
tion. r(t) (dimensionless eventually becomes
positive for all quenches below the mean-field
transition but the time for that crossover increases
dramatically for larger quenches. At large times
r(t) approaches.q.
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Crossover Time

FIG. 9. The calculated crossover tiniie ar-
bitrary unit9 plotted against quench depth. Also
plotted is a characteristic growth time for the
_ lamellar structure. These results have been scaled
using Eq.(8) so that they are\x independent.
When this time becomes much less than the
crossover time then the lamellar structure has
enough time to grow. Notice that this occurs just
above or at the transition temperature

scaled time

a hill). As the fluctuations grow with time, the nonlinear  For a quench depth of=—0.07 (* = —5.27) this time
terms characterized hy become important and they renor- evolution can be compared to a series of system snapshots
malize the curvature of the hill. This scenario is quite differ-shown in Figs. 11-15. These figures represgst0 isosur-
ent from the usual picture of evolution in an adiabatic potenfaces which would be the boundaries between the different
tial. microphases of the system. For early times the system ap-
pears to be very disordered while at later times domains of
ordered lamellar structures begin to appear. Just before the
_ ) _ final convulsive growth, at a time=4000, there still appear
Further evidence for the dynamical scenario presented iy pe a few different ordered domains while just after the
the previous section comes from examining the long timejng| growth, att=5000, only one domain appears to be left
evolution of the peak of the structure factor obtained fromjp, the system. Thus we still have a consistent picture of slow
our numerical simulations and correlating that to snapshotgt continuous domain growth in the system which is gov-

of the system as it evolves. Figure 10 is a plot of the amplierned by the evolution of the second-order term as it goes
tude of the structure factor peak as it evolves. For shallowom negative values to positive values.

guenches,r=—0.03 (r*=—2.26), the peak grows to an

eqwhbnum value and.does nqt evolve fu.rt'he_r. The equilib- V. DISCUSSION AND FUTURE WORK

rium values are consistent with the equilibrium values re-

ported above in Sec. lll. For deeper quenches the peak am- In the work presented above we have shown that analysis
plitude grows quickly and then appears to saturate; howevesf the static free energy does not always provide an adequate
careful examination shows that the value continues to growdescription of the fluctuation-driven dynamics. Although
very slowly. This is consistent with late stage domain growthFig. 10 shows features that are reminiscent of a first-order
which was studied extensively by Eldest al. for two-  phase transition, dynamical analysis of the renormalized co-
dimensional(2D) systemg24]. The last feature in the sys- efficients suggests that a more complicated evolution is tak-
tem is a final rise to an equilibrium value. This rise is a finiteing place. A similar situation occurs for the superconducting
size affect caused by the majority domain finally taking overtransition, which is also a fluctuation-driven first-order tran-
the entire system. This being the case, the peak would not ksition [20].

expected to grow much since the difference between the In the present work we have paid close attention to the
value before and after this final evolution should only repretime evolution of the mass parameter and its effect on the
sent the surface area between the different domains. evolution of the system at early times. The dynamical per-

C. Simulation results for late times

0.0040 - . . T : T : FIG. 10. The evolution of the structure factor
peak(in arbitrary unit$ as a function of time for
different quench depths. For all of these runs
=0.06. From the static work we know that the
actual transition occurs for-0.04<7<—0.03.
For shallow quenches above the actual transition
temperatureS(q,) grows quickly to its equilib-

0.0030

@ 0.0020 \ )

) rium value. For quenches to below the transition
temperature the system grows quickly at early
times and then reaches a late stage regime where

0.0010 . .
it evolves by domain growth an§(qy) grows as
a small power law in time. The highlighted line is
0.0000 a quench tor=—0.07. Snapshots of this system

as it evolves are presented in the next set of
figures.
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FIG. 11. Time=1000.

FIG. 12. Time=2000.

FIG. 13. Time=3000.

FIG. 14. Time=4000.

turbation theory also becomes tractable at times large com-
pared tot.,,ss When the system has reached equilibrium. As
pointed out earlier, one enters this regime fairly quickly for
shallow quenches. At this stage, the higher order terms in
"4y, become important. The most interesting aspect of the
renormalized theory is that the fourth-order term becomes
nonlocal in time[10],

den(4)=fd1d2<1>2(1)K(1—2)<D2(2), (16)

and the integral of the kernel over all times leads to the
Brazovskii result for the renormalized fourth-order term. One
can derive an “effective” Langevin equation for the fielgs
from the renormalized’y,,, and Eq.(16) implies that this
Langevin equation has “memory” effects that appear in the
nonlinear term. This would lead to unusual behavior of the
equilibrium correlation functions and might provide a dis-
tinctive signature of fluctuation-driven first-order transitions.
We are in the process of investigating the effective equation
for ¢ numerically. One obvious consequence of the nonlocal
term is that the barrier to nucleation is dynamic and it is not
valid to think of nucleation as tunneling through a fixed bar-
rier. The situation is closer to the problem of quantum tun-

FIG. 15. Time=5000.
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neling for many degrees of freedom where one also finds astate is metastable will probably be inaccessipg5].
effective equation that is nonlocal in tinf21]. Diblock copolymers are another experimental system in

Another area of interest is the role of defects in the phasevhich the results described here may be observed. One cru-
transition of the system. These will be important for verycial difference between this work and the polymer experi-
shallow quenches to just below the transition point and wenental system is that in a polymer melt the order parameter
have noted their presence when looking at snapshots of the conserved. Inclusion of the conservation law in the work
system. These defects are reminiscent of the perforategescribed here would shift the magnitude of the wave vector
lamellar phase described in R¢22]. One way to study this peak in the growth factor of the linear theory by an amount
is to use a directional order parameter measure introduced tB’roportionaI to the quench depttik?; however, this shift is

Christensen and Braj23] to study the 2D problem. This small and it does not change the fact that growth occurs on

order parameter is similar to the order parameter for complex : C :
fluids and provides directional as well as density informa-2" isotropic shell ofy ve_ctors, .Wh'Ch IS cru0|a_l to the results_
tion. What it may show is that the local gradient terms arereported here. As mentioned in the Introduction, the dynamic

enhanced for negative values of suggesting that perhaps equations consldered_ he.re apply only to polymers n the
there is a disordered to nematic transition in this regionweak segregation regime; that is where the conservation law

which others have suggested for 224]. [1_3] and hydrodynamics are not importgpt. Even so, in

The evidence we have presented here suggests that tHiblock copolymers there should be a significant temperature
time evolution of systems undergoing a fluctuation-driven-fange, below the mean-field transition, where the disordered
first-order transition is different from standard nucleation.state is locally stable, and a study of the equilibrium, two-
We would like to close with a discussion of possible experi-time correlation function should reveal the existence of the
mental systems where this dynamic scenario can be studigtpnlinear memory term. It might also be possible to observe
experimentally. Since the effective is extremely small in  unusual nucleation if the system parameters allowsfortto
Rayleigh-Bmard systems the regime where the disorderedye higher tharu-:jyn.
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